Search the site...

organization for human brain mapping
  • BLOG
  • Tutorials
  • Media
  • Contributors
  • OHBM WEBSITE
  • BLOG
  • Tutorials
  • Media
  • Contributors
  • OHBM WEBSITE

 BRAIN MAPPING

 

May OHBM Open Science Demo Call

6/17/2018

0 Comments

 
By Elizabeth DuPre and Kirstie Whitaker

This month we continued our Open Science Demo Call series with a focus on this year’s OHBM annual meeting in Singapore, and the many ways that OHBM members promote open science at the meeting. We heard from Michele Veldsman, Ayaka Ando, and Aki Nikolaidis from the student and postdoc special interest group; Greg Kiar and Anisha Keshevan from the open science special interest group; and Nils Muhlert from the communications committee.


Picture
We first heard from Aki about the Monday Night Social, featuring beautiful views of the Singapore skyline and an announcement of the winners of this year’s Brain Art competition. All OHBM members are encouraged to attend! Ayaka gave us a sneak peak into this year’s career development symposium, 'The Secrets Behind Success' with presentations from Tom Nichols and Lucina Uddin. Michelle told us about the mentorship program, which seeks to support professional growth at all career levels, from masters students to principal investigators. Although mentors and mentees meet at the OHBM annual meeting, you don’t have to be attending to get involved! Aki, Ayaka, and Michelle encourage everyone interested in any of these initiatives to stop by one of their events or reach out on twitter!


PictureGreg & Anisha
Greg and Anisha then told us about this year’s OHBM BrainHack and TrainTrack. Formerly known as the OHBM hackathon, this is a collaborative event which brings together researchers and scientists from across the neuroimaging community to work together on projects, learn new skills, and engage with the community. While registration for the BrainHack and TrainTrack is sold out, the Open Science Room at OHBM will be hosting demos, workshops, and an open working space throughout the annual meeting. Greg and Anisha encourage everybody to come and find out about the great initiatives and individuals in our open science community!


PictureNils visiting the Arab Quarter in Singapore
Nils introduced us to the amazing work the communications committee is doing to spotlight open science at the meeting and throughout the year. They were involved in revamping the OHBM website and maintain a blog highlighting initiatives within the OHBM community (including these demo calls!), as well as educational materials such as the OnDemand courses. Nils pointed out that this provides a great way to stay involved year-round (e.g. workshops on analysing diffusion MRI), even for those who cannot attend the annual meeting. The communications committee also helps promote the excellent brain mapping work carried out around the world, and provides a unique window into the stories of many successful neuroscientists through their keynote interview series. Nils encourages anyone interested in contributing to the blog to sign up!


We’ll be taking a break next month for the annual meeting, but look forward to starting back up at the end of the summer! If you’d like to nominate yourself or someone else to be featured on these monthly calls, please add their information at
this github issue, or email the host of the calls Kirstie Whitaker at kw401@cam.ac.uk. You can also join the OSSIG google group to receive reminders each month.
0 Comments

Announcing Aperture - the OHBM Publishing Platform

6/15/2018

0 Comments

 
BY NIKOLA STIKOV AND JEAN-BAPTISTE POLINE
(IN CONSULTATION WITH THE OHBM PUBLISHING INITIATIVE COMMITTEE)


The current academic publishing norms impose many constraints on how and what we publish without fully embracing the new web-enabled dynamics. The emergence of the internet as the de facto publication medium, and the availability of open source technologies for handling the hosting and peer review process, have made it possible for organizations such as OHBM to experiment with innovative publishing platforms and to host high-quality research objects while promoting reproducible and open science.

With Aperture, OHBM plans to open up to a more diverse approach in communicating academic research, bringing transparency and interactivity to the publishing process. While initially our focus will be on reviews, tutorials and educational materials, we foresee using this format to incorporate computational notebooks, interactive plots, software, data, and post-publication peer-review to create living, reusable and reproducible research objects. We hope to have a beta version of Aperture in time for the Rome meeting in 2019.
Picture
Aperture workflow meeting with Adam Hyde from the Coko Foundation.
Over the past year, members of The OHBM Publishing Initiative Committee (TOPIC) have been meeting with representatives of publishing companies and funding agencies to come up with a workflow that plays to our strengths as leaders in the field of open neuroimaging. We are now working closely with the Collaborative Knowledge Foundation (Coko) to put together a publishing workflow, and we are grateful to the Canadian Open Neuroscience Platform (CONP) for providing generous support for the development of Aperture. 
Coko has extensive experience developing open source publishing components, some of which are used by Elife and other open-access publishers. Their framework could give the Open Science SIG and the broader OHBM community the opportunity to participate in the construction of Aperture. We look forward to establishing even more collaborations with like-minded partners.
Picture
The roadmap of The OHBM Publishing Initiative Committee (TOPIC) proposed to Council in late 2017.
Most importantly, we want to hear from our members! For that purpose, we invite you all to attend the Publishing Round Table, to be held at the annual meeting in Singapore on Monday June 18 at noon (Room: 324-326). Please join us for what we hope will be a fruitful discussion about the future of Aperture!
0 Comments

OHBM2018 Q&A with Daniel Margulies: Free Spirits Of The Tree House

6/13/2018

0 Comments

 
By AmanPreet Badhwar

“In a forest of a hundred thousand trees, no two leaves are alike. And no two journeys along the same path are alike.” ― Paulo Coelho

---
See Daniel Margulies' keynote speech here: 
www.pathlms.com/ohbm/courses/8246/sections/12540/video_presentations/115825
---

My first OHBM annual meeting experience was in 2015. I did not know many researchers in the field, having just started my postdoc in human brain imaging. On top of that, I was attending OHBM 2015 without my postdoc supervisor in tow (who knew the community well), and worried about not finding my place in the human brain mapping community. Luckily, I had met Daniel Margulies a few months prior to OHBM 2015. Not only did he make it a point to introduce me to the community at this particular annual meeting, but I also found myself happily involved in the many grassroot initiatives of the Neuro Bureau: ranging from brainhacks to sci-art exhibits to open science initiatives. Fast-forward to today, I have developed my own unique voice in the OHBM community, and it is in large part due to guidance from Daniel and his free-spirited compatriots during those formative moments in time. I have had the opportunity to collaborate with Daniel on several projects, both scientific and sci-artistic, and recently had the pleasure of interviewing him at the inaugural BrainHack School 2018 in Montreal.
​


Picture
AmanPreet Badhwar (AB): How would you describe your research to a random person on the street?

Daniel Margulies (DM): When explaining my research to a random person on the street, I usually gesture to my head to illustrate that I study the brain. If there is time for further elaboration, I explain that I study how areas are spatially arranged and connected to one another using MRI, and the consequences of this layout for the possibilities and constraints of cognition.


AB: What projects are you currently working on? Could you comment on some of the breakthroughs and bottlenecks you have encountered?

DM: I’ve recently moved my lab from Leipzig to Paris, which has provided a refreshing opportunity to set new research priorities and establish new collaborations. We recently identified a gradient in cortical organization that spans from primary cortical areas to the regions of the default-mode network, so my current projects are extending this observation to explore its consequences for cognition, cross-species comparative studies, and exploring how the gradient can be divided into zones of cross-modal integration.


AB: Can you tell me a bit about your career path?

DM: I studied humanities in undergrad, but ended up in neuroscience through a chance encounter years ago at a bus stop in New York that resulted in an invitation to join Xavier Castellano’s lab at New York University as a research assistant. I was soon introduced to neuroimaging data analysis by Mike Milham and imparted with a love for neuroanatomy by Michael Petrides. A similar twist of fate landed me in Berlin a few years later as a graduate student with Arno Villringer. I was very fortunate to have mentors that were immeasurably supportive and offered me opportunities to pursue my various interests. This all came together when I started my own lab in 2012 at the Max Planck Institute in Leipzig.


AB: What is your take on multimodal research? How have you integrated this within your own research project?

DM: The complexity of various fields in neuroimaging today has resulted in a level of specialization that makes it challenging to take a wider perspective. I believe one of the major challenges we face is in thinking across different methods and vocabularies to construct unified models that underlie these diverse, and at times divergent measures. As my core project aims to understand some basic principles of how features of the cerebral cortex are spatially arranged, perspectives from multiple modalities are central towards achieving that goal. We make use of the macaque monkey tract-tracing literature, high-resolution MRI, meta-analytic and task-based approaches… So much data is openly available these days that conducting multimodal studies is really becoming more the norm than the exception.


AB: If “like connects to like” in the brain, then tell us a bit about what makes the brain work as a unit?

DM: “Like connects to like” is a principle that has been introduced to describe preferential long-range connections between cortical areas that have similar degrees of laminar differentiation. It’s pithy and captures an elegant multimodal phenomenon of cortical organization. Nevertheless, various other principles are also critical to cortical organization, such as extensive connectivity between neighboring areas. Although there is a substantial focus in brain mapping of the differences and discrete boundaries between areas and large-scale systems, one challenge that your question illustrates is to also consider how these distinctions are integrated into a functional whole. There is little doubt that the brain is highly interconnected — a factor that is important to remember when delineating various subdivisions.


PictureThree of the core Neuro Bureau members: DM, Cameron Craddock and Pierre Bellec
AB: You are a Neuro Bureau member. Could you tell me a bit about the Neuro Bureau?

DM: I started the Neuro Bureau with Cameron Craddock back in 2009 or so. When we first got going, all we had was the name, which we felt at the time was a solid enough starting point to merit a purpose. We developed the Neuro Bureau into a cross-institutional and cross-disciplinary support group for early career researchers with the aim of providing the neuroimaging community with projects and initiatives that weren’t traditionally credited. This includes the Open Science Gala at OHBM, the brain-art competition and exhibition, and the preprocessed data initiatives. The idea was to infuse our community with new perspectives, to render it more accessible to other disciplines, and to make it in some ways more playful. Towards those goals we also encouraged a spirit of open scientific practice, which grew into Brainhack a few years later. Early on I received the advice to help create the research community I wanted to be a part of — the Neuro Bureau is our way of doing just that.


​AB: Could you comment on the Neuro Bureau’s role in mentoring trainees?


DM: I’ve never really thought of the Neuro Bureau as a mentoring-oriented organization. Mentoring implies a mentor and mentee, and the Neuro Bureau has always had more the spirit of a tree house, along with all the big ideas, camaraderie, shoe-string operations, and mischievousness that tree houses tend to have. Good mentorship is so critical when joining the neuroimaging community, but so is finding your own group of peers — a kind of research family. For us, the Neuro Bureau provides a space to try out new ideas, seek support when faced with the various challenges of research, and to feel that we have a place of our own in the wider community.

AB: Thank you Daniel for taking the time to sit down for this interview. Looking forward to your keynote at OHBM 2018.

0 Comments

Q&A with Bea Luna: OHBM 2018 Keynote Series

6/7/2018

0 Comments

 
By Shruti Vij

“I have always loved the idea of not being what people expect me to be!” - Dita Von Teese.
PictureProfessor Bea Luna
---
See Bea Luna's keynote OHBM2018 lecture here: 
https://www.pathlms.com/ohbm/courses/8246/sections/12540/video_presentations/115831
---
​
There isn’t another stalwart in neuroscience that this quote is better suited to describe. Be it her expertise in developmental cognitive neuroscience, her championing of novel techniques such as concurrent PET-MR scanning, her vocal demeanor or her punk rock persona! Bea Luna’s research persona lends an overwhelming sense of success in being not only innovative but also purposeful in her dogged pursuit of making one of the toughest periods in life - adolescence - better understood. She has to her credit hundreds of articles and many prestigious grants and awards, in addition to being the President of
FLUX Society. With such lofty achievements, one might expect her to be a sombre intellectual but one is easily surprised by her bubbly and inviting personality! This article probably does not reflect my personal excitement at being able to interview such an amazing role model and to have so many take-aways from our conversation was definitely a bonus! What’s more, as you read on, you will discover that to be you in your own way is what leads you to success! Something that the world of academics needs to stop and think about while being in the rush to achieve the next big thing!

Shruti Vij (SV): The research focus of your lab at Pittsburgh is neurocognitive development. In particular, you are interested in brain maturation in adolescence. What motivated you to pursue this direction?

Bea Luna (BL): I was a crazy risk-taking teenager having fun and questioning everything, which probably contributed to being kicked out of school! But I remember being very aware that this was a really unique time of feeling free and invincible and that it was finite. I was very much into philosophy – thinking about what the mind means, what the brain means. It was during this time that I found out brain function could be measured with PET, and would fantasize about one day being able to use this to understand human consciousness.

As a grad student, I studied visual and attentional development longitudinally in premature infants who, due to their immature lungs, can have hypoxic ischaemic events in the brain. I was surprised and fascinated that it didn’t matter if half the brain was missing, or if there was a little dot of hypoxic ischaemia, it did not predict outcome in visual acuity and attentional processes. I thought, wow, how can that be? In adults it would be obvious what the outcome was likely to be. You could also think about diaschisis – where a small region could be injured but it compromises its connectivity to a whole bunch of other regions. So it became clear that what mattered, especially with regards to development, was the integrity of the functional brain, beyond structure, what the brain does with what it has as it is specializing. fMRI was just emerging and I was fascinated with the possibility of using this approach to look at development, which I concluded in my dissertation. However, I was discouraged from the ability to use it in pediatric populations, and I thought, ‘oh yeah, watch me’.

I did my postdoc in the Psychiatry department with John Sweeney where he saw that my developmental expertise could help us probe the prevalent theories that mental illness emerged in adolescence and neurobiological maturation could hold important clues. This was a perfect fit between my interest in developmental plasticity and brain functional integrity. From then on I just didn’t stop.


SV: And the field of cognitive neuroscience is thankful for that! What are some key questions that you think are going to be the big drivers in developmental cognitive neuroscience in the coming years and how is your research contributing to these questions?

BL: We are developing as a field ourselves. There has been great advances in mapping the regions and networks that show changes with age and their links to specific components of cognition. One of the areas that I have been a spokesperson about is the need to now understand  the neural mechanisms underlying the developmental changes that we see with neuroimaging. Seeing pretty brain pictures is no longer enough. We need to speak to our colleagues that use animal models, those who are doing post-mortem work to build comprehensive models of development. This is how we can take the next step and make our work translational.

For example, we have an amazing project, that I’ll be talking about in my keynote, where we use a molecular MR machine that acquires MR and PET simultaneously. It’s very hypothesis driven and it considers different lines of evidence that suggests hyper-processing of the dopamine system in adolescence. Intuitively this makes sense but it’s very complex. I’ve literally stood up in front of big audiences and said “Hi I’m Bea Luna. I’m a developmental cognitive neuroscientist and I have overgeneralized  the concept of dopamine function.” It’s a very complex system with pre- and post-synaptic processes and multiple types of receptors, all who could have their own developmental trajectory.

This is one of the ways that we are trying to understand mechanisms. I’ll also be talking about tissue iron as a proxy of dopamine. It’s difficult (though not impossible) to get testing pediatric populations with PET through the IRB so we’re finding this proxy for dopamine processing with MR-derived tissue iron. We are finding striking associations with tissue iron and PET markers of dopamine processing and how these are changing with age. You can see that talk for the punchline! I’ll also be mentioning a future direction with a new project that’s just started where we’re using spectroscopy at 7T using very complex acquisitions to look at changes in GABA and glutamate and the tissue iron proxy for dopamine. These three neurotransmitters are essential to understand plasticity. Animal models show molecular evidence for critical period opening and closing through puberty in association cortices, which motivates this new approach to understand critical period (vs. sensitive period) plasticity in association cortices in humans in vivo during adolescence. I find this tremendously exciting!

I come up with these crazy questions that compel me to probe them regardless of the complex technology it may require. Was I a PET expert? No. But I really want to understand what’s going on with dopamine. So, I go to my colleagues and say ‘elucidate me, tell me about how to use PET to answer my questions.’ It’s the same with MRS: ‘tell me how I can use this technology in the best way possible to answer my mechanistic questions’. I say, ‘come play with us’ and let’s use this fancy approach to answer some very cool questions. This is how we end up collaborating with people in other departments at Pitt and with other Universities such as MGH, and start discussions with Columbia and Stoney Brook to use new approaches. We also have some even newer projects looking at single-cell work in monkeys to further understand the actual neural basis of cognitive development.


SV: What do you think are the novel technological advances that will assist in uncovering brain maturation?

BL: Certainly PET/MR and MRSI have reached a level that can be applied to developmental questions. But there are tremendous advances in the analyses area including computational modelling, machine learning, and advanced statistics that can push the envelope as to what we can answer. We have been bringing that into the fore to make sense of these molecular mechanisms but also advancing what we can do with longitudinal neuroimaging data, resting state fMRI, and how to become informed by reinforcement learning. Resting state in particular is critically advancing in how we can control for head motion, a huge problem in developmental studies. Diffusion-weighted imaging has now advanced to a level that allows us to apply not just tensor models, but orientation approaches that afford us greater insight into the maturation of white matter connectivity making inferences beyond just myelination. For example, we know that glia dynamically influences myelination. Let’s not forget about the importance of behavioral assessments, which at the end of the day, we need to merge with our brain data to assess its relevance. Finally, Big Data approaches have had a huge impact in the power we now have to answer questions. We share our data as well as use other’s Big Data to replicate our findings. In sum, multimodal approaches to inform mechanisms, advanced analyses, and big data is where the field is showing great advancement.

 
SV: In today’s discussion on diversity and inclusion, what are your thoughts and how do you address these issues in your lab?

BL: First, I’ll tell you what my soapbox is. I was in the advisory council for the director of the NIH – this was in 2012. They’d just started to really speak about diversity. I was different to other minorities in the council. Understandably, they wanted to see enhancement and so on, but I thought ‘no, I don’t need your help because I’m a woman or I’m Hispanic. When I give a talk at SFN or OHBM I don’t want people to think ‘oh my god, look at the woman talking – and she’s Hispanic too.’ I said you know what Francis, white men have done a great job, and keep advancing things. That’s great, and we’re grateful – but I’m in a different place and am bringing insights that will never come to that closed club. So, actually, “you’re welcome!”.  I’ve been in a lot of high level committees where I do feel in the minority, as a woman. I don’t blame the men, I have a husband, I have a son. I don’t think they mean ill – but I do notice that I have to prove myself, and it can take a while before I am finally listened to and my ideas be deemed critically helpful. White man are accepted much quicker. Again, I don’t think this is intentional at all and I get great satisfaction when I have won them over. I also don’t mind doing the extra work, it keeps me on my toes in science and keeps me humble. It is what it is, but I do see change. I see that men are really aware and trying to do better. Then again, my “dopamine” personality may be playing a role beyond typical diversity, ha ha.
Picture
Bea's lab at Pittsburgh
​SV: Your trainees speak very highly of you and the work environment that you have created in your lab. Is this purposeful? What are the things that you personally make an effort on to make things better and easier for your trainees?

BL: First of all, awesome! I am careful about selecting smart people that will fit into our dynamic cool atmosphere. Some may think “party lab” but in fact we are more about working hard and pushing each other in a respectful but humorous manner. Everyone in my lab loves what they’re doing and I don’t have to look over their shoulders. They’re self-driven, and that really works. I give them their space and I’ve been really lucky. Every grad student I’ve had has been amazing.

At the top of my list of favorite things is the one-on-one with my mentees. I talk to these young, super-brilliant people. They may not be familiar with these big questions that I have. So I have a discussion and there’s some theoretical aspects that take a while to understand – but I tell them not to worry. I’m planting seeds in their brain that will later grow. I tell them that they will deliberate and they will come up with the logical next step, which I am not interested in. Instead, I want to hear the other idea. I want to hear the one they’re embarrassed to tell me because it’s so outrageous, the one that makes you giggle. For me that’s great, because it’s usually in the context of bigger questions and leads to a bigger step forward. For them, it turns out that it grabs their passion, and then it’s their thing. They’re not following tightly in my footsteps. We go back-and-forth and think outside of the box with no limits. As a philosophy double major I loved to just boldly think beyond the obvious and now I can do this within my scientific questions with my brilliant students, who are so frikkin smart. But there’s a lot of laughter – sometimes too much!

There are a lot of bonds made in the lab – we’ve even had marriages. They are all discussing new methods and approaches and I love hearing how they all interact and help one another just for the joy of collaborating. I am careful not to bring in difficult people so as not to mess with our cool vibe.


SV: You are also the president of FLUX in addition to being an actively involved academic stalwart. How do you manage all this in the same 24 hours everyone gets?

BL: great question – I want to deliver an important message here. I think I can work intensely for a concentrated amount of time – but I try not to get into the office before 9 as I like my thinking space in the early morning before i go to the lab. Granted I’ll typically work until 7 or 7.30, and on the weekends I really try do minimal work. I think that’s super important. You need that space, doing other things, seeing your friends. Some of my friends have no idea what neuroscience is, a lot of them are artists and I think that gives you space to make the connections. If you’re always looking at the trees you sometimes struggle to see the forest, the bigger questions.

There are times when there are lots of deadlines, and it can be stressful. I’m in a medical school so you write grants, that’s what you do. Now I have an endowed chair so things are a bit easier but I always maintain a couple of R01s plus other collaborations and foundation grants. It used to be very stressful to know that you had to get a grant or sink. But for the last two grants, I thought enough, I’m going to love my the grant writing process. I now embrace and laugh at the innovative directions that I am willing to go. My first grants would take a couple of rounds to get funded with comments that the ideas were awesome but how could this be done, prove it! And we would! Now I have a track record and they get through more smoothly (knock on wood). I definitely never want to get a critique that everything is fine but “yawn”. When I have to write grants I get everyone involved and its a party with discussions going on everywhere and every white board filled with ideas and it’s intense and fun and we laugh a lot. I get home mentally exhausted but satisfied and my husband has a martini ready and feeds me. I don’t engage those who will be leaving the lab soon though since they will not be around, and I feel that they feel left out cause they want to play too.
Picture
Celebrating success in the Lab for Neurocognitive Development

By the way Flux is not an acronym, although everyone always capitalizes it. I made a great effort to not have an acronym. I chose the word Flux to always remind developmental cognitive neuroscientists that we are studying a dynamic process and we need to capture what is in Flux. I am so proud of the Society and the amazing conference that Brad Schlaggar, Silvia Bunge, and Bruce McCandliss and I made. We dreamed this up at a conference when we were all postdocs drinking at a pier late at night toasting to how one day we would bring developmental cognitive neuroscience into its own! By the way, that was another of those moments when people were saying no way that is too hard don’t do it, I didn’t even wince. Now as developmental cognitive neuroscientists we have a home and we bring people in to help unite us in advancing the field from David van Essen, Steve Petersen, Russ Poldrack, Michael Posner, John Gabrieli and on and on. We have intense days of hardcore science and then… party hard ending with crazy, and i am not kidding, crazy karaoke and people sweating and dancing from students to bigwigs. The idea being to break the science class system and for students to see that we are all in it together and for them to start forming bonds with each other that will end up in collaborations for great science.
 
SV: OHBM is largely made up of trainees at many different levels. They look up to people like you and would like your advice. What other advice would you like communicated to our large trainee audience?

BL: Whenever I find myself providing advice for people – and I see this a lot where people have to make choices, such as what lab to go to, what job, what country etc - some things that I think nobody ever tells them is to consider the whole package, to not put their personal life at the end of the list. For example, leaving the person they love to pursue what they think is the only path to career success. If you’re passionate about your science, you can make it work in many places. I personally chose to be where my husband and I both loved. That said, pursue the questions that you are passionate about, don’t compromise on that because this work is hard and can be stressful. But if you’re pursuing the questions that you are passionate about then you can deal with the annoyances. If you’re just going to do things because they’re convenient or they’re going to look good, then it’s not going to make you happy. For me the secret of success is to do what you really want to do, not what you think you should be doing.

Speaking of moving for work, I’m presently looking for postdocs, grad students, RAs to join the lab. If you’re into innovative thinking, great questions, and working with an awesome group doing new approaches then contact me, we’re actively looking for people. Feel free to contact me or my lab manager for further details!

SV: Thanks again for taking the time to share these wonderful pearls of wisdom with our audience! We look forward to your keynote next month!

The interview finished and as a trainee struggling to understand my personal growth within academia, I came away with a fresh look and a new mentor I felt I could seek out for advice! It also made me more confident that academics like Bea are what we are all fighting to be!
0 Comments

OHBM2018 Keynote series: Q&A with Martijn van den Heuvel

6/1/2018

0 Comments

 
By Tommy Boshkovski
PictureMartijn van den Heuvel
---
See Martijn van den Heuvel's keynote OHBM2018 lecture here: 
https://www.pathlms.com/ohbm/courses/8246/sections/12540/video_presentations/115834
---

Martijn van den Heuvel heads the Dutch Connectome Lab, part of the Complex Traits Genetics Lab at the VU University in Amsterdam. The goal of his research is to understand the association between brain complexity and brain function in health and disease. We had the pleasure to interview Martijn and find out more about his career, and also get a sneak preview of his keynote lecture at OHBM 2018 in Singapore.  
    


Tommy Boshkovski (TB): Can you tell us a bit about your background and your lab?

Martijn van den Heuvel (MvdH): 
I finished my undergrad and master’s in artificial intelligence, and Ph.D. studies in medical science at the University of Utrecht in the Netherlands. After finishing my Ph.D. I got a faculty position, and then my team and I recently moved to Amsterdam to the Center for Neurogenomics and Cognitive Research. There I built my lab on connectomics, we are quite a group of connectome enthusiasts;  some of them are Ph.D. students, and some of them are postdocs now. The group is really multidisciplinary. We have a biologist, a physicist, mathematicians, psychologists, and engineers, and that's really my approach. I always try to make the group as interdisciplinary as possible, preferably with people that could do something other than what we can do.

TB: What motivated you to start a career in Connectomics?

MvdH: 
I’m not sure if anyone has intrinsic motivations to start a career in connectomics. The reason why I started to apply network science to brain imaging was actually by accident. I have a background in artificial intelligence, and I was trained in machine learning and neural networks, so to me that looked like a very obvious thing to do. I started to play around with small world network analysis, and then I got in contact with the big people in the field like Kees Stam and Olaf Sporns, and basically, that is how I rolled into the field.

TB: You are one of the keynote speakers at the upcoming OHBM annual meeting. Could you tell us how you got started with OHBM?

MvdH: I think OHBM was my first meeting that I have ever, attended, back when I was a master’s student. I was honored that my professor let me go (I think the meeting was in Budapest that year). It was awesome to be around all those people that were working on similar things. But I always had to choose between OHBM, ISMRM and SFN, and I think later on in my career I had the luxury to sometimes go to all three, and I really like that mix. The nice thing about OHBM is that it is very application-driven, so there are many people that are using the tools, but there is also (in more recent years) a growing interest in developing new tools in the field of network science and connectomics. I am part of a joint effort with Andrew Zalesky and Alex Fornito, organizing an (almost) annual educational symposium on graph theory and network science at the meeting, which is great.

TB: What can we expect from your plenary lecture?

MvdH: I’m going to tell quite a bit about the connectome. First I’m looking forward to providing a bird’s-eye view on the connectome field. I want to spend some time on “why are we doing this?” – so that’s the first part. Ideally, I want to put this into the framework of “if the brain is wired like it is, then does this also give certain vulnerabilities to brain disorders?” One of the ways that we are looking into this is by means of comparative connectomics. We got more and more interested in looking at connectome features shared across species. If these features are evolved through evolution and are present in many different species, then they might form the very core of the brain. I think it is really important to understand these ground rules of the brain because only then can we start understanding how the changes in the ground rules may lead to various different types of brain disorders. This will make up the second part of my talk, where I won’t focus just on one disorder, but, rather, I’ll talk about the wide range of brain disorders. Most of these studies are single disorders studies (i.e. we found property X or property Y to be involved in schizophrenia) but I think the field is ready now to start looking into more deep-rooted questions. I’m asking which of these effects are specific, and which of them are common across brain disorders. It is really important to understand the multidimensional aspects and multi-disease effect of connectomics.

TB: Which recent developments in the field excite you the most?

MvdH: There are quite a number of them, but what I really like is that the field moves a little bit away from just studying the connectome and starts combining this with other types of measurements.  The connectome field is 10 - 15 years old, but it’s pretty nice to see that people already take it for granted. I am particularly excited by using for example gene expression data and combining them with connectome data, or using cell biology data, like cytoarchitectonics, and incorporating it into the connectome model. I think these developments are pretty cool to see from a multidimensional neuroscience perspective.  What I also find exciting to see is that there is a lot OHBMof effort going on in improving the connectome field. Recent statistics papers show that it might be relatively easy to make a network, but then to study it in a very meticulous way, to have good case-control studies, it might actually be more difficult than we earlier thought. So there are great improvements in the last couple of years in new statistical methods that really also adopt the network perspective. Finally, there are so many efforts going into mapping connectomes of a wide range of species across different resolutions. A big part of the connectomics community is outside the MRI community, and I really hope that these communities will start to mix.

TB: Where do you see connectomics in the next 5-10 years?

MvdH: Connectomics is a young field, so looking into the future 5 or 10 years, or even 5 or 10 days is difficult. I do think that there will be more room for combining different types of data into the connectome model. We’re going to see more and more papers that combine EEG with fMRI, or diffusion with functional measurements or even beyond that, such as combining genetics with imaging, because the connectome alone is not going to give us the final answer. I hope that we are going to start using in-vivo connectomics, in a more clinical application. When we start to merge the machine learning field, the big data field, with the in vivo neuroimaging connectomics, there is room for very exciting discoveries: for example, some sort of personalized connectomics where we could use connectome imaging to make predictions on disease outcome, medications response, etc.,  and I think that could be feasible. It is going to be a rough road, and I’m not sure whether we are going to do this in 5 or 10 years, but I think it’s possible to use a clinical connectome approach on an individual level, like precision connectomics.

TB: In your opinion, what are the most burning issues that connectomics is facing?

MvdH: Of course, there are issues that need to be resolved, but I’m a positive guy and I think the glass is always three quarters full. For example, there are the issues of statistics I mentioned before. We could really learn from other fields that use complexity science. That is actually where the field started, so perhaps we should go back a little bit to the roots and also look at the social networks, transportation networks, the field of finance, the field of physics and look at the methods that are developed there and get some sort of a collaboration. I think that would really help the field even further. Also, there is a lot of room for validation of the methodology that we use. The connectome field now is mostly computational, so we extract these features from the brain like hubs or modules etc., but I think it would be really cool if the field could now make the next step and start looking into hardcore biology and look for whether we see some evidence of these things there. Now it’s time to actually use cell biology research or wet-lab research to zoom into those hubs and see what is it that makes these regions so special and what are their cell properties, their genetic properties, and in that way can we validate our computational findings. I think that will really help to further ground the field into the rest of neuroscience.
Picture
Martijn engaging in a national pastime
TB: What are your other interests besides connectomics?

MvdH: I’m Dutch, so obviously I cycle just like 17 million of my fellow countryman. I’m also quite interested in tech, like new gadgets or new developments in the machine learning and/or big data fields. Besides that, I’m a dad. I have two kids, which are of course the two nicest connectomes out there.

0 Comments

    BLOG HOME

    ​TUTORIALS

    ​MEDIA

    ​contributors

    ​OHBM WEBSITE


    ​

    OHBM OnDemand 
    ​Education Platform


    RSS Feed

      blog survey

    Submit

    Archives

    February 2021
    January 2021
    December 2020
    November 2020
    October 2020
    September 2020
    June 2020
    May 2020
    April 2020
    March 2020
    February 2020
    January 2020
    December 2019
    November 2019
    October 2019
    September 2019
    August 2019
    July 2019
    June 2019
    May 2019
    April 2019
    March 2019
    February 2019
    January 2019
    December 2018
    November 2018
    October 2018
    August 2018
    July 2018
    June 2018
    May 2018
    April 2018
    March 2018
    February 2018
    January 2018
    December 2017
    November 2017
    October 2017
    September 2017
    August 2017
    July 2017
    June 2017
    May 2017
    April 2017
    March 2017
    February 2017
    January 2017
    December 2016
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016

stay connected with ohbm!


become a member

Telephone

952-646-2029

Email ohbm

EMAIL BLOG TEAM
Header image created by Thiebaut de Schotten & Batrancourt  
www.brainconnectivitybehaviour.eu