BY THOMAS YEO
--- See Kalanit Grill-Spector's OHBM2017 keynote lecture here: https://www.pathlms.com/ohbm/courses/5158/video_presentations/76037 --- Professor Kalanit Grill-Spector is the principal investigator of the Vision and Perception Neuroscience Lab at the Department of Psychology and the Stanford Neuroscience Institute at Stanford University. She will give a much anticipated keynote lecture at the upcoming 2017 OHBM Annual Meeting at Vancouver. We caught up with Professor Grill-Spector to discuss her illustrious research career. Thomas Yeo (TY): Imagine that you meet some random person off the street. How would you describe your research to the person? Kalanit Grill-Spector (KGS): The core of my research is figuring out how the brain enables us – as humans – to understand what we see. Therefore, my research examines how the function, anatomy, and computations of the parts of the brain that are involved in visual processing relate to visual perception. Additionally, I am interested in uncovering how these parts of the brain develop from childhood to adulthood and what aspects of this development are shaped by experience.
0 Comments
OHBM 2017: Student and Postdoc SIG announces Mentorship and Career Development Initiatives5/19/2017 BY SHRUTI GOPAL VIJ
Human nature dictates that each and every one of us seeks guidance on life choices and trajectories. A key to this is mentorship. As scientists navigating the ever hardening world of academia it is vital today to find a mentor. A mentor that can show you the short-cuts, encourage you, applaud your achievements and support you in tough times. While some of us are lucky to find such mentors in some form or other, there are a large number of students, postdocs and other early career researchers who are left in the lurch. On the other hand, neuroimaging has quite a few established researchers and PIs who have themselves taken a long winding path picking up tips along the way that will make them great mentors. The OHBM Student and Post-doc SIG of 2017 aspires to provide a platform for both mentors and mentees to come together and establish an independent and effective mentoring relationship. This initiative, spearheaded by AmanPreet Badhwar (chair) and Michele Veldsman (chair-elect) with enormous support from SIG officials, covers two aspects, 1) a Mentorship and Career Development Symposium at OHBM 2017, and 2) an online Mentorship program. BY DAVID MEHLER In a recent blog post we learned about the activities of the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), whose members work on establishing recommendations and tools to increase transparency and reproducibility in human neuroimaging. Together with other early career researchers I was fortunate to recently attend a workshop dedicated to Advanced Methods for Reproducible Science. There, a number of pioneers in reproducible science discussed the challenges of the field, and introduced ways to improve current practices. As part of this, Dr. Russell Poldrack discussed creating reproducible research pipelines for neuroimaging. Russ Poldrack is a professor of Psychology at Stanford University where he also heads the Stanford Centre for Reproducible Neuroscience. He presented a new exciting framework for reproducible neuroimaging called Brain Imaging Data Structure standard application (BIDS app). Russ agreed to an interview, providing an ideal opportunity to find out more about his views on the reproducibility crisis in science and get his recommendations for the field. Whenever you find a seemingly good result – one that fits your prediction – assume that it occurred due to an error in your code. - Russ Poldrack BY JEAN CHEN
For those who have not yet come across functional connectivity in their research, it won’t be long before you do. In the human brain mapping community, functional connectivity is often defined as the correlation between brain regions that share functional properties (activation patterns or fluctuations). Functional connectivity can be measured in an active or “resting” (task-less) brain state, using electrophysiological, optical and MRI methods. In recent years, the brain’s functional connectivity has begun to capture the public’s imagination in a tangible way. In 2009, the National Institutes of Health launched the Human Connectome Project to map all connections in the brain, including functional connections. This was followed by the European launch of the ambitious Human Brain Project in 2013. Today, beyond helping us to understand how the brain works, functional connectivity measurements are widely used in studying brain aging and brain diseases. Some examples include ADNI (USA), BIOCARD (USA), ONDRI (Canada), CCNA (Canada), SMART (Europe), Rotterdam Study (Europe) and the Sydney Memory and Aging Study (Australia). |
BLOG HOME
Archives
January 2024
|