![]() By Lisa Nickerson The current Chair of the OHBM is Jia-Hong Gao, who brings a fresh perspective being the first Chair elected from Asia. Jia-Hong received his Ph.D. from Yale, followed by post-doctoral work at MIT and faculty positions at San Antonio and Chicago. Since 2013, Jia-Hong has been in Beijing as the Director of the Beijing City Key Lab for Medical Physics and Engineering and a Principal Investigator at the McGovern Institute for Brain Research at Peking University. We interviewed him about his experiences as Chair of OHBM, what excites him most about neuroimaging, and the rapid expansion of neuroimaging research in China. Lisa Nickerson (LN): What has been your experience as Chair of OHBM?
Jia-Hong Gao (JG): The OHBM is like a family for people interested in the human brain, and provides an open and lively forum where various ideas can converge, collide and create. Since my election, I have felt more connected to every corner of the community than ever before. I’ve had the opportunity to directly interact with researchers to understand their opinions, perspectives, suggestions and critiques across multiple disciplines and across different countries. Previously, I was a researcher connected to the OHBM, but now I have been given a panoramic view that shows how amazing the bonds established by OHBM are in linking scientists in the brain mapping community. More importantly, I feel obliged to protect and promote this tight-knit community, which has tremendous potential to impact academia, industry and society. LN: What do you hope to accomplish as Chair of OHBM and in what areas do you see opportunities for growth and impact for the OHBM? JG: Generally, I hope the OHBM will evolve as a multidisciplinary interface where people from all backgrounds can communicate efficiently and sufficiently. Currently, human beings in modern society are facing many challenges and problems. With decades of development, the science of and imaging technology for studying the human brain have evolved to a stage where we need to collaborate with many other fields to gain fresh perspectives, such as artificial intelligence, genetic biology, environmental sciences, engineering, social sciences, and so on. In addition, different parts of the world are confronting different demands and problems, from which novel perspectives and values will arise. If the OHBM plays a central role in facilitating effective collaboration and dialog between different regions and disciplines, more researchers and professionals will work together to help discover solutions to these issues. This new knowledge and technology will, in turn, benefit human brain research and our organization. I also consider the OHBM to play a key role in the linkage of brain research with medical or societal applications, for example, how functional imaging can impact diagnostics or public policies. LN: What excites you the most about neuroimaging research today? JG: There are so many exciting aspects of neuroimaging. As a neuroimaging researcher, I am particularly excited by the advances in brain imaging technologies, such as the new generation of wearable MEG and high field (7T+) MRI. These revolutionary technologies offer new information and perspectives about the human brain, which is still incredibly mysterious in many ways. I also find it very exciting that I have witnessed many advances that improve our efficiency for studying the human brain, such as increasing computational capacity and automatic data processing pipelines. Another exciting development is that there are now numerous open access big datasets (such as HCP and UK Biobank) that are accessible to the public and will lead to enormously fruitful advances. Studies based on these open access data will generate comprehensive results that reflect various facets and dimensions of the human brain. Hopefully, we can piece these accomplishments together to finally unlock the ‘black box’ of the human brain. LN: What do you consider to be your greatest scientific achievement? JG: I am trained as an MRI physicist and now I study brain science. I am very excited that my background offers opportunities to work in an extremely multidisciplinary field. My projects include research on diverse topics, including cerebellar function, obesity, sleep, high-field MRI technology and new MEG technology. I enjoy all of these research areas tremendously. LN: What direction do you see your own research going in the next few years? JG: Currently, my interests span basic neuroscience research, as well as development of MEG and high field MRI technology. One particular interest is to address problems related to sleep, including why we have to sleep and how our cognitive systems are functioning during sleep. Also, in my lab, we are building a next generation MEG system based on optical pumping magnetometer technology, and will apply this new system to study challenging clinical issues such as epilepsy and neuropsychiatric diseases. LN: Neuroimaging in China seems to be developing at a very fast pace. What is driving these advancements and how do you think neuroimaging in China will evolve over the next few years? JG: Rapidly increasing funding support from Chinese central and local governments has driven the fast pace and prosperity of neuroimaging research in China. In addition, China will launch the China Brain Project shortly. The central goal of this project is to understand human cognition and to devote resources and research capabilities to address urgent societal needs given that the increasing social burden of major brain disorders are calling for new preventive, diagnostic and therapeutic approaches. To realize or even surpass its goals, the Brain Project will progress hand-in-hand with neuroimaging advances. LN: What do you see as compelling questions neuroimagers should be focusing on and what are your thoughts on the future of neuroimaging? Are the questions and priorities the same in China as in Europe and the US? JG: While many neuroimagers are dedicated to understanding complex human cognitive functions and brain disorders, I think there is an urgent call to bring functional neuroimaging technologies and research output from laboratory to ‘bed-side’ applications, namely linking neuroimaging research to medical applications. For example, fMRI technology was invented nearly 30 years ago and has revolutionized neuroscience research. However, the integration of fMRI into routine clinical practice is really non-existent in most hospitals worldwide. Furthermore, confronted with a new era of big data, scientists need to harness the ever-increasing amount of information by revolutionary brain-inspired computing methods and systems that are essential to achieve stronger artificial intelligence. As for priority, these questions should not be ranked dramatically different between countries, but there will be minor differences provided that different countries and regions have their own situations. In China, the physicians and medical system are under huge pressure in terms of how to better serve a large population with greatly diverse demands. Thus, I think it is incredibly urgent for China to clearly link neuroimaging research to clinical usage. LN: Are there effective opportunities in China to help young investigators become successful neuroimaging researchers that are not widely available for young scientists in the US? For example, my graduate student from Dalian Technical University is receiving a stipend from the Chinese government for him to spend two years studying in my lab. JG: From my perspective, there are great opportunities around the world for young neuroimaging researchers to boost their early career development. The Chinese government is putting more and more emphasis on scientific research. Over the last few years, it has become much easier for young Chinese investigators to receive ample government sponsorship for education or training in other countries, and an increasing number of Chinese researchers with an international education are returning to China. In addition, generous funding support and friendly open policies from the Chinese government have attracted many extraordinary non-Chinese scientists across different fields (including neuroimaging) from other countries, including the US, Germany and Japan, to start their labs as full-time PIs in China. Further, China has a large population with a diverse pool of brain diseases and disorders that makes it easier (in terms of patient recruitment) for scientists to find solutions to both common and rare clinical conditions. Last, neuroimaging-related enterprises are emerging in China so that neuroimaging researchers can have closer links to industry and greater opportunities to convert academic research to medical or societal applications. LN: Many thanks.
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
BLOG HOME
Archives
January 2024
|