By Peter Bandettini & the OHBM Neurosalience production team
In this episode, Peter Bandettini meets with Tom Nichols, Remi Gau and Jack Van Horn to discuss the motivation for a set of best reporting and analysis practices. This provides insight into how the COBIDAS (Committee on Best Practice in Data Analysis and Sharing) in OHBM started. We talk about the reproducibility crisis in fMRI and how it is being addressed. We discuss how the culture of fMRI has changed from isolated scientists doing N=20 studies to a connected web of researchers collecting and contributing to fMRI databases of high quality data for the purpose of revealing ever more subtle information. Through this work, the field aims to achieve robust biomarkers that are clinically useful in diagnosing and treating diseases. We also discuss many of the issues and decisions made in analysis, and how this may contribute to irreproducible results. Last, we consider the ongoing and future global efforts to increase data transparency to make fMRI a more effective tool.
Remi Gau, Ph.D. is currently a postdoc at the Catholic University of Louvain in Belgium. He received his PhD. in 2010 in neurosciences from the University of Pierre and Marie Curie in Paris, and has studied fMRI methodology at Max Planck Institute in Tuebingen and University of Birmingham, UK. He has been active over the years focusing on the infrastructure of imaging data collection and sharing as well as more widely on the culture of neuroimaging, and most recently, created the COBIDAS (Committee on Best Practice in Data Analysis and Sharing) checklist in 2019 as well as eCOBIDAS. He also does neuroscience research, focusing on laminar fMRI to explore how the brain integrates and uses information.
Tom Nichols, Ph.D. is the Professor of Neuroimaging Statistics and a Wellcome Trust Senior Research Fellow in Basic Biomedical Science. He is a statistician with a solitary focus on modelling and inference methods for brain imaging research. He has a unique background, with both industrial and academic experience, and diverse training including computer science, cognitive neuroscience and statistics. He received his Ph.D. in Statistics from Carnegie Mellon University in 2001. After serving on the faculty of University of Michigan's Department of Biostatistics (2000-2006) he became the Director Modelling and Genetics at GlaxoSmithKline's Clinical Imaging Centre, London. He returned to academia in 2009 moving to the University of Warwick, taking a joint position between the Department of Statistics and the Warwick Manufacturing Group. Finally in 2017, he joined the Big Data Institute at Oxford. The focus of Dr. Nichols work is developing modelling and inference methods for brain image data. His current research involves meta-analysis of neuroimaging studies and informatics tools to make data sharing easy and pervasive. Jack Van Horn, Ph.D. received his Ph.D. in Psychology from the University of London, and then received his Masters of Science and Engineering from the University of Maryland. He is currently a professor in the department of Psychology at the University of Virginia. He was a staff fellow at the NIH until 2000. He moved to Dartmouth College and while there - until 2006 - was instrumental in starting their databasing and data sharing efforts. In 2006 he moved to UCLA and contributed in a large way to their data repository efforts. In 2014 he moved to USC, and finally in 2020, moved to the University of Virginia. He has been an active member of OHBM and a proponent of data sharing since the very early days. --- The Neurosalience production team consists of Anastasia Brovkin, Katie Moran, Nils Muhlert, Kevin Sitek, and Rachael Stickland.
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
BLOG HOME
Archives
January 2024
|