BY EKATERINA DOBRYAKOVA --- See Anissa Abi-Dargham's OHBM2016 keynote lecture here: https://www.pathlms.com/ohbm/courses/3233/video_presentations/33867 --- The Organization for Human Brain Mapping hosted an exciting lecture on June 30th, 2016 with Dr. Anissa Abi-Dargham who presented her work pertaining to the topography of dopamine alteration in schizophrenia through the use of PET imaging. Anissa Abi-Dargham is a Professor of Psychiatry and Radiology at CUMC, Columbia University, and New York State Psychiatric Institute, where she directs the Division of Translational Imaging. Dr. Abi-Dargham is a pioneer in PET neuroimaging, beginning her research in the field of dopamine transmission in schizophrenia in the 1990s. Her research has resulted in seminal findings that explain the complex alterations of dopamine transmission in schizophrenia and the impact these alterations have on clinical symptoms, cognition and response to treatment.
Ekaterina Dobryakova: What motivated you to go into your particular area of research? Anissa Abi-Dargham: I went to medical school to become a psychiatrist and study psychosis. Out of all brain disorders psychosis seemed the most extreme to me and the most devastating on people’s lives. Brain imaging, especially molecular imaging, seemed to be a useful approach to get one step closer to the underlying “brain biology” that relates to psychosis. When I started there was much interest in dopamine in schizophrenia so I did some of these studies with my colleagues and one finding led to the next question and next study. Now we have greater understanding of the complexities of this system in schizophrenia. ED: If you weren't talking to brain mappers or scientists, how would you describe your most proud scientific accomplishment? AA: It must be the study where I estimated amounts of dopamine (a transmitter in the brain used between nerve cells to transmit signals) and compared patients with schizophrenia and controls. To do so I had to remove most if not all dopamine in the brain (by giving a treatment that stops new synthesis or production of dopamine for 48 hours, this is called a depleted state) and then compared the baseline scan (before depletion) to the depleted scan to derive how much dopamine was removed, thus inferring how much dopamine was present at baseline. ED: If you were speaking to a non-scientist, how would you describe your research and what you do for a living? AA: The brain is a complicated and intricate super computer that remains like a black box. It is difficult to understand its normal functioning, much less its dysfunctional function in brain disorders. I use imaging techniques to get at some of these questions. ED: What do you think are the most pressing issues in neuroimaging for your area of interest? For the field in general? AA: Technology, funding, collaborations: we need to develop better tools, that are safe to use and not invasive so we can image the complexity of the brain. We need participants in research and multi site collaborations to have enough power to address the variability across human subjects, and funding to do all that. ED: What do you think is the future of neuroimaging for basic research? For translational research and application? AA: Imaging can serve as an ideal translational tool to understand and link the effects of genes onto cells, circuits an behavior. Animal models can provide an illustration of genes’ effects which can be searched for in humans. So imaging can bridge all these multi-levels of investigation across species. ED: When you first started out, what was the most inspiring/motivating paper you read? How about the same question, but in the last 5 years? AA: Tough question because there were / are too many. An inspiring one was that of Surmeier and Gerfen summarizing the circuitry involving direct and indirect pathways in the striatum, I often read it and re-read it. In the last 5 years I would say some of the main papers marking major advances in the field, for example the genetics findings in schizophrenia published in Nature 2014. But others too, it is really hard to pick just one… ED: What should the non-expert be wary of when reading about brain mapping articles in the lay press? AA: Since imaging is very technical it is difficult for the non-expert to judge if a study is methodologically sound. That is the biggest issue. Another is small sample sizes and hyper inflated results. In general findings need to be replicated for one to start to believe them.
0 Comments
Your comment will be posted after it is approved.
Leave a Reply. |
BLOG HOME
Archives
January 2024
|